The Tsc1-Tsc2 complex influences neuronal polarity by modulating TORC1 activity and SAD levels.
نویسندگان
چکیده
Neuronal function depends on the specification of neuronal processes as axons or dendrites. In this issue of Genes & Development Choi and colleagues (2485-2495) show that without Tuberous Sclerosis Complex 1 (Tsc1) or Tsc2, molecules linked to the autosomal dominant disease tuberous sclerosis, an increase in the activity of the translational regulator Target of Rapamycin 1 (TORC1) causes neurons to have multiple axons and the translation of SAD kinase increases as well. Thus, in addition to the kinase LKB1, the Tsc1-Tsc2 complex, acting through TORC1, also modulates SAD to regulate axon formation.
منابع مشابه
Tuberous sclerosis complex proteins control axon formation.
Axon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mutations in which cause tuberous sclerosis complex (TSC), a disease characterized by tumor predisposition and neurological abnormalities including epilepsy, mental retardation, and autism. Here we show that Tsc1 and Tsc2 have critical functions in mammalian axon formation and growth. Overexpression o...
متن کاملTSC1/2 regulates intestinal stem cell maintenance and lineage differentiation through Rheb-TORC1-S6K but independently of nutritional status or Notch regulation.
Tubular sclerosis complex gene products TSC1 and TSC2 have evolutionarily conserved roles in cell growth from Drosophila to mammals. Here we reveal important roles for TSC1/2 in regulating intestinal stem cell (ISC) maintenance and differentiation of the enteroendocrine cell lineage in the Drosophila midgut. Loss of either the Tsc1 or Tsc2 gene in ISCs causes rapid ISC loss through TORC1 hypera...
متن کاملTSC1/2 tumour suppressor complex maintains Drosophila germline stem cells by preventing differentiation.
Tuberous sclerosis complex human disease gene products TSC1 and TSC2 form a functional complex that negatively regulates target of rapamycin (TOR), an evolutionarily conserved kinase that plays a central role in cell growth and metabolism. Here, we describe a novel role of TSC1/2 in controlling stem cell maintenance. We show that in the Drosophila ovary, disruption of either the Tsc1 or Tsc2 ge...
متن کاملPlatelet-derived growth factor/vascular endothelial growth factor receptor inactivation by sunitinib results in Tsc1/Tsc2-dependent inhibition of TORC1.
Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors are implicated in development and tumorigenesis and dual inhibitors like sunitinib are prescribed for cancer treatment. While mammalian VEGF and PDGF receptors are present in multiple isoforms and heterodimers, Drosophila encodes one ancestral PDGF/VEGF receptor, PVR. We identified PVR in an unbiased c...
متن کاملAkt Phosphorylates Both Tsc1 and Tsc2 in Drosophila, but Neither Phosphorylation Is Required for Normal Animal Growth
Akt, an essential component of the insulin pathway, is a potent inducer of tissue growth. One of Akt's phosphorylation targets is Tsc2, an inhibitor of the anabolic kinase TOR. This could account for part of Akt's growth promoting activity. Although phosphorylation of Tsc2 by Akt does occur in vivo, and under certain circumstances can lead to reduced Tsc2 activity, the functional significance o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genes & development
دوره 22 18 شماره
صفحات -
تاریخ انتشار 2008